Problem Session (1)

2022.12.24. Shuji Toyama

Topic: Construction of bicyclo[3.3.1]nonane skeleton
Please explain the reaction mechanism.
1.

1. 1-2 (2.4 eq.), THF, rt, 98\%
2. KH (3 eq.), 18-Crown-6 (3 eq.), THF, rt ; MgBr_{2} (5 eq.), $50^{\circ} \mathrm{C}$; $\mathrm{Mel}\left(5 \mathrm{eq}\right.$.), $50^{\circ} \mathrm{C}$
3. LiTMP (1.2 eq.), THF/Et ${ }_{2} \mathrm{O}\left(1: 1\right.$), -78 to $0^{\circ} \mathrm{C}$; 1-3 (1.2 eq.), $-40^{\circ} \mathrm{C}, 29 \%$ (2 steps)
4. $\mathrm{Pd}(\mathrm{OAc})_{2}(15 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ (1.1 eq.)

DMSO/TMSOH (7:3), rt, 95\%
5. KOH (100 eq.), $\mathrm{MeOH} ; \mathrm{Phl}(\mathrm{OAc})_{2}(2.7 \mathrm{eq}),.-10-0^{\circ} \mathrm{C}, 75 \%$

1-1
2.

1. $\operatorname{LiN}(T M S)_{2}$ (2 eq.), 2-2 (3 eq.), $\mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt, 92%
2. conc. HCl aq. (6 eq .), $\mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 75 \%$

3. CeCl_{3} (2.5 eq.), 2-3 (2.5 eq.), THF, -70 to $-30^{\circ} \mathrm{C}$
4. $\mathrm{Piv}_{2} \mathrm{O}$ (2.2 eq .), pyridine (11 eq .), DMAP ($3 \mathrm{~mol} \%$), $0^{\circ} \mathrm{C}$ to rt
5. $\mathrm{Ac}_{2} \mathrm{O}$ (2 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 eq .), DMAP ($3 \mathrm{~mol} \%$)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \%$ (3 steps)

2-1
single diastereomer

* proposed stereochemistry

Problem Session (1) -Answer-
Topic: Construction of bicyclo[3.3.1]nonane skeleton
Introduction: Bicyclic polyprenylated acylphloroglucinols (BPAPs)

Type A BPAP
Biosynthesis

Yang, X. W.; Li, M. M.; Liu, X.; Ferreira, D.; Ding, Y.; Zhang, J. J.; Liao, Y.; Qin, H. B.; Xu, G. J. Nat. Prod. 2015, 78, 885.
Shibasaki's synthesis (first total synthesis of Garsubellin A (Type A))

By Ring-closing metathesis, C3 and C4 were connected.
Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 14200.
Shair's synthesis (enantioselective total synthesis of (+)-Hyperforin (Type A))

Nucleophilic attack from methyl enol ether to epoxide activated by TMSOTf connected C1 and C8.
Following acetal hydrolysis gave bicyclo[3.3.1]nonane skeleton.
Sparling, B. A.; Moebius, D. C.; Shair, M. D. J. Am. Chem. Soc. 2013, 135, 644.
140111_PS_Yusuke_Sesoko.

1. 1-2 (2.4 eq.), THF, rt, 98\%
2. KH (3 eq.), 18-Crown-6 (3 eq.), THF, rt

$$
\left.; \mathrm{MgBr}_{2} \text { (} 5 \mathrm{eq} .\right), 50^{\circ} \mathrm{C} \text {; Mel (5 eq.), } 50^{\circ} \mathrm{C}
$$

3. LiTMP (1.2 eq.), $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(1: 1),-78$ to $0^{\circ} \mathrm{C}$
4. $\mathrm{Pd}(\mathrm{OAc})_{2}(15 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(1.1 \mathrm{eq}$.

DMSO/TMSOH (7:3), rt, 95\%
5. KOH (100 eq.), $\mathrm{MeOH} ; \mathrm{Phl}(\mathrm{OAc})_{2}(2.7 \mathrm{eq}),.-10-0^{\circ} \mathrm{C}, 75 \%$
$1-1$

Garsubellin A (1-5)
Shen, X.; Ting, C. P.; Xu, G.; Maimone, T. J. Nat. Commun. 2020, 11, 508.

Discussion 1: Palladium catalized oxidative cyclization

X-ray structure of 1-22

1. $\operatorname{LiN}(T M S)_{2}$ (2 eq.), 2-2 (3 eq.), THF, $0^{\circ} \mathrm{C}$ to rt, 92%
2. conc. HCl aq. (6 eq .), THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 75 \%$

3. CeCl_{3} (2.5 eq.), 2-3 (2.5 eq.), THF, -70 to $-30^{\circ} \mathrm{C}$
4. $\mathrm{Piv}_{2} \mathrm{O}$ (2.2 eq.), pyridine (11 eq.), DMAP ($3 \mathrm{~mol} \%$), $0^{\circ} \mathrm{C}$ to rt
5. $\mathrm{Ac}_{2} \mathrm{O}$ (2 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 eq.), DMAP (3 mol\%) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \%$ (3 steps)

2-1
3 steps

7-epi-Nemorosone (2-5)
2-4 single diastereomer * proposed stereochemistry

2-2

Zhang, Q.; Mitasev, B.; Qi, J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2010, 132, 14212. Zhang, Q.; Porco, J. A., Jr. Org. Lett. 2012, 14, 1796.

2-8-a

2-8-b Conjugated enolate 2-8 is more stable than 2-9.

2-10

2-11

1.6:1 tautomeric mixture
(the major tautomer is not determined.)

Discussion 3: Sequential cyclization
3-1. Comparison of C 1 and C 3
There are two possible nucleophilic carbon, C1 and C3.

C3 is less nucleophilic than C1 because of the inductive effect of methyl group on oxygen. So the reaction may occur at C1 position first.

3-2. Comparison of 1,2-addition and 1,4-addition

Both 1,2 -addition and 1,4 -addition may be possible.

Most of the reactions are reversible. As soon as 2-16 is generated, irreversible demethylation gives 2-17.

3-3. The order of demethylation

Zhang, Q.; Mitasev, B.; Qi, J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2010, 132, 14212.
By using LiCl, 2-29 was generated, which has different carbon skeleton from 2-17.
Demethylation of 2-10 by LiCl would give 2-29 instead of 2-17 as follows.

Demethylation would induce nucleophilic attack from C3, so the order seems to be important.

Appendix:

Determination of C27-stereochemistry

X-ray structure of 2-35
According to this result, C27-stereochemistry of 2-4 was proposed.

